Mutations

From ARK: Survival Evolved Wiki
Jump to: navigation, search
Mutations
ColorMutation Anky.jpg
Changes in stats and colors of bred offspring
Infos
Released v252.0

Mutations are random stat boosts and color changes applied to offspring when breeding tamed creatures. For further insights see the External links section.

Probability of Mutation[edit | edit source]

For each offspring up to three mutations can occur, each with a 2.5% chance, assuming both parents are eligible to receive a mutation. If multiple mutations occur, they may affect the same or different stats.

The probability for at least one mutation in an offspring who's parents both have less than 20 matrilineal and patrilineal mutations is 7.31%, for at least two mutations it is 0.535% and for three mutations the probability 0.039%.

The probability for at least one mutation in an offspring who's "better stat" parent has 20 or more mutations is 3.34%.

The probability for at least one mutation in an offspring who's "worse stat" parent has 20 or more mutations is 4.07%.

The probability for at least one mutation in an offspring who's parents have equal stats and one of which has more than 20 mutations is 3.70%

The probability for at least one mutation in an offspring who's parents each have more than 20 mutations is 0%.[1] [2]

Mutation Mechanics[edit | edit source]

Stat mutations are determined and applied in the following steps (from the code at [1]):

  1. Initial stat selection from parents (not technically part of mutations)
  2. Select a stat for mutation
  3. Assign a parent as source of potential mutation
  4. Random roll for mutation (2.5% chance)
  5. Apply mutation and color change
  6. Repeat #2-5 two more times

Many write-ups regarding mutations will mention "mutating a stat on a parent" or similar language, which may be confusing if you are new to breeding. To be clear, only the offspring's stats are ever actually modified/mutated, after they are initially set in step #1 above. The mutation mechanic assigns one of the parents as the source of a mutation, but it is not actually mutating the parent creature.

When you read "parent has 20/20" or similar below, this is referring to the total mutations on the parent - its Matrilineal+Patrilineal mutation Counters. See the Mutation Counters section for more details and also the code at [1].

1. Initial Stat Selection from Parents[edit | edit source]

The initial stat values are selected from either the mother or the father, with a 55% chance that the stronger stat will be selected. For example if the mother has 20 wild levels in melee father has 30 levels, it is 55% likely that the offspring's melee value will initially (before mutations) be set at +30 levels.

2. Selecting a Stat for Mutation[edit | edit source]

(This step along with the next three are repeated for three iterations.)
A single stat is selected for possible Mutation. Only stats which can be leveled up for the species will be selected.

3. Assigning a Parent as Source of Mutation[edit | edit source]

One of the parents is chosen as the source of the mutation, again with a 55% chance that the stronger parent (in that stat) is chosen. This is a completely independent check from the initial stat assignment, meaning that the father might have provided the offspring's initial melee stat, but the mother is the source of a mutation to it.

If the source of the mutation has reached the 20 mutation limit, then this mutation chance is lost and a new iteration (if any are left) begins at #2. For example, if you breed a 20/20 father and a 0/20 mother and on mutation iteration #1 (of 3) the father is chosen as the source for a mutation, the mutation does not happen (the 2.5% chance is not even evaluated) and the iteration is complete. This of course reduces (by approximately 50%) the already-slim chances of a mutation actually occurring so if you want the full 7.31% chance of at least one mutation, both parents must be <20. See the section below on mutation Stacking for more information about breeding maximum stats.

4. Random Roll for Mutation[edit | edit source]

If the "source" parent is valid, then the 2.5% chance is evaluated. If this check fails, this mutation iteration is complete and a new iteration (if any are left) begins at #2.

5. Apply Mutation and Color Change[edit | edit source]

If the mutation check succeeds, then the offspring's stat is evaluated; if it's determined less than 255 levels it is then given 2 wild levels and the mutation counter on the side (Matrilineal/Patrilineal) of the source of the mutation (not the source of the initial stat) is increased by 1. Additionally, a random mutation to a color region will occur. This color mutation may not be obvious due to it resulting in a very similar color to one of the parents, or due to the algorithm choosing a color region not used by the species.

According to the code at [1], any of the 56 colors can be selected for the resulting Mutated color. However other testing from [3] appears to show a bias for the brighter Color IDs of 1-18.

6. Repeat #2-5 Twice More[edit | edit source]

Regardless of whether or not a mutation occurred, the process is repeated twice more. The same stat may be affected twice (+4) or even three times (+6) if you are especially lucky!

Mutation Counters[edit | edit source]

The Ancestry screen for each creature shows a mutation counter on both the Matrilineal (mother's) and Patrilineal (father's) side. These numbers do not show the actual mutations on the creature. Rather, they are a combination of the parents' mutation counters plus any actual mutations expressed when the baby was hatched. Without knowing details of the ancestry of a particular creature, it is impossible to tell how many actual mutations have been a) carried forward from a parent or b) expressed at birth (though with some reverse-engineering it is possible to make some guesses). The reason the numbers are given as X/20 is explained below.

Wild creatures begin with zero mutations on both sides. Baby tame creatures (from breeding, not from stolen eggs e.g. Wyvern) inherit a base mutation counter value from each parent. This base value is equal to the parent's own matrilineal + patrilineal counters.

  • Mother's Matrilineal + Patrilineal = baby's Matrilineal counter
  • Father's Matrilineal + Patrilineal = baby's Patrilineal counter

Additionally, if Step 4 above results in a mutation on a baby's stat, the mutation counter for the source of the mutation is increased. If mother was the source of the mutation (not necessarily the source of the initial stat), the Matrilineal counter gets +1. If the father was the source of the mutation, then baby's Patrilineal counter gets +1.

When considering creatures as potential parents, if the creature's combined mutation counters (Matrilineal + Patrilineal) is greater than 20, then any potential mutations which have that parent as the source (Step 3 above) will automatically fail.

Note - previous writeup said that only Patrilinial number matterd for fathers, and only Matrilineal number mattered for mothers, but this is contradicted by the code. See calc for RandomMutationCount and RandomMutationCountMate at [1].

Here is an example showing some possible mutation counter results for Mutated and non-Mutated babies:

Matrilineal/20 Patrilineal/20 New Mutations Description
Mother 1 4 N/A N/A
Father 10 5 N/A N/A
Baby 1 5 15 0 No successful mutations; baby inherits M+P counters from each side
Baby 2 5 16 1 (+2 levels to a stat) Father was the source of the mutation; +1 to P counter
Baby 3 6 15 1 (+2 levels to a stat) Mother was the source of the mutation; +1 to M counter
Baby 4 6 16 2 (+2 levels to 2 stats/+4 to one stat) Both parents were the source of a mutation; +1 to both M & P counters

Because the mutation count is stored as a signed 32-bit integer it's possible that mutation counters will be expressed as a negative number. This happens when the count would have exceeded 2,147,483,647. The signing bit is then reversed and a negative number is observed. The inverse is also true, when two extremely small numbers are added together and exceed -2,147,483,647 the signing bit will flip producing a positive number. For all intents and purposes these negative numbers are still less than the maximum of 20, therefore a male with a negative mutation count can be bred with a female with a < 20 mutation count and be eligible for the 7.31% chance of a mutation occurring.

How to Breed Super Creatures[edit | edit source]

Selective mutation breeding / mutation stacking

  1. Breed a creature that has the best stats that you can find. – the creature has to have less than a combined mutation counter of 20
  2. Get a low level creature that has 0 levels in each of the stats you aren't interested in, e.g. Oxygen, Food, Weight, and Speed. All creatures are limited on Official Servers to level 449 or less so every level counts.
  3. Get a breeding pair 1 male and as many females as you can (the more the faster the whole process gets). Ideally, they should all have the same stats and 0 on their combined mutation counters.
  4. Breed… a lot.
  5. Get a mutation in the stat you are looking for (e.g. Health)
    1. on a baby that inherited the lower stat of both parents
    2. on a baby that inherited the higher stat of both parents
  6. Breed your new mutation to a male creature.
  7. Swap your original male with the new mutated (e.g. Health) male creature.
  8. Repeat point 5.2 - 7.
  9. Stop if your creature reaches level 376 – The Official Server creature level cap is level 450 (included), 449 - 73 = 376. Any creature that reaches level 450 (included) will be deleted by the game (official servers). Every species is different and may benefit from fewer domestic levels in certain stats. Some math will be required to figure out the optimal distribution of stat levels for your species.
  10. Stop if you reach 254 levels in specific stat – Ark will prevent a stat from being leveled if the wild level count for that stat is 255 but not if it is lower and not if the stat's wild levels plus the stat's domestic levels meet or exceed 255.[4]

Note: The male creature's mutation counter will exceed 20. This isn't an issue as long as you continue to use females with a combined mutation counter less than 20. The male's will continue to contribute their high stat levels while the females will continue to offer mutation chances.

Example: Breeding a god Rex.

  1. Starting Rex stats bred from all best Rex's you have.
    Starting stats
    Family tree
  2. Getting a level 1 Rex. (May require taming a few low level Rex's and breeding them together to get 0's in all of the stats)
  3. Breeding a Rex that has no points in undesirable stats, e.g. Oxygen, Food, Weight, and Speed.
  4. Selective mutations breeding – for a very long time
  5. In this case the goal was to get high levels for health and melee, so every health or melee mutation was used.
  6. Final stats
    Final levels
    Family tree
  7. Breeding for color – such an OP creature needs to look nice too
    Color mutations

Every new color mutation that appeared in the process was kept, so in the end there were around 200+ Rex's of every color imaginable on each color region.

The Rex in the example was bred a little different, all levels in movement speed were eliminated in the end.

FAQ[edit | edit source]

  • Why did my baby creature get +2 levels in a stat, but the colors seem to be the same?
The color mutation can target any of the six color regions, however not all creatures use all regions, so it is possible that the color mutation is invisible. For example, if color regions 1, 2, or 3 are targeted for mutation on a Sabertooth, you will not see any visible color change.
Another reason for not seeing a color mutation is that the mutated color is the same or very similar to the original color.
  • Why did my baby creature get a color mutation, but no visible stat mutation?
Either a) the stat mutation targeted Movement Speed, which will not result in a visible increase in the stat value or b) the source of the base stat was the weaker parent, who was exactly two wild levels below its mate and so, after mutation, the baby ends up with exactly the same stat levels as the stronger parent. It looks to you like the baby just inherited from the stronger parent when it actually has [weaker parent +2].
Note that a stat mutation is always detectable through a higher Torpor value and higher total level. That is, if you see that Torpor & total level are higher than expected, it is certain that a stat mutation occurred even if it is not obvious.
  • Why did total level go up, but there is no visible stat increase and no color change?
This can happen as a combination of the first two cases. The only thing that visibly changes is the Torpor and the total level.
  • Can the mutated color be the same as the original color?
Yes, the mutation color is chosen randomly.
  • Can a creature mutate twice at the same time?
Yes, up to three mutations can happen for an offspring, with +2 wild levels on a stat one color change for each mutation. Multiple mutations can target the same stat, so you could see +4 or +6 wild levels on a single stat.
  • Can creatures be bred infinitely to increase their stats?
No, there is a level cap of 450 on official servers, any creature that reaches level 450 is deleted by the game (official servers). Note that selective mutation breeding is a very long process and it’s going to take months of real time, until that limit is hit.
  • Could a low level creature with 3 mutation in a stat used to transfer these mutations on a high level creature to increase its stat-values?
No, mutations cannot be transferred to other creatures. Only offspring can get new mutations. As well, the game does not record which stats on a creature are mutated or by how much. Once the mutation algorithm is finished and the baby is hatched/born, the only data recorded is the current levels in each stat and the total Matrilineal and Patrilineal mutation counters. The game does not record whether the current stat levels are naturally inherited or mutated.
  • Can the offspring of parents with total mutations (Matrilineal + Patrilineal) of greater than 20 have mutations?
No, at least one parent with a total mutation counter of less than 20 is needed to have an offspring with a mutation. If only one parent meets this requirement, the chance for a mutation is approximately halved..
  • Can the offspring of a parent with more than 20 total mutations have inherit a stat of this parent and have a mutation on this stat?
Yes, if the other parent has a mutation counter of less than 20.[5] This method is used in selective mutation breeding. See the detailed mechanics above regarding the source of the initial stat vs. the source of the mutation. Either parent can be the source of the initial stat, but only a <20 parent can be the source of a mutation.
  • Does a high mutation counter imply a good creature?
No. The mutation counter doesn't reflect the stats of the creature and is independent of them, so a creature with 0 mutations can have very high levels and a creature with a high mutation-counter can have 0 levels in each stat. For more information watch one of tagbacktv’s videos on mutations.

Gallery[edit | edit source]

External links[edit | edit source]

References[edit | edit source]

  1. 1.0 1.1 1.2 1.3 1.4 Mutation-probability on reddit
  2. https://docs.google.com/spreadsheets/d/1mRXbPVCHC0suV_OJnr3fuycvROlWhzFGKhp7SbSSCc0/edit?usp=sharing
  3. https://www.reddit.com/r/playark/comments/66n962/mutations_and_you_a_guide_on_breeding_mutations/
  4. This was verified by admin spawning a creature and checking it's stat levels with the Admin Rifle. The raptor had 252 melee and 255 speed. Speed levelup was disabled in the creature's inventory, but melee was leveled an additional 11 times without issue.
  5. mutations and you on reddit